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Abstract—Privacy and security are significant issues in the
field of biometric traits in today’s world. This research paper
presents a comprehensive study that utilizes seven different deep
learning models to classify Finger Knuckle Prints (FKP). The
main aim of this study is to examine the efficacy of fine-tuning
pretrained vision models in adapting to the specific dataset being
analyzed. The models employed in this study include AlexNet,
DensNet, EfficientNet, GoogleNet, Shallow Convolutional Neu-
ral Networks (SCNNs), ResNet50, and VisionTransformer. The
models underwent training and testing procedures utilizing a
comprehensive dataset obtained from 165 volunteers by Hong
Kong Polytechnic University (Poly U). This dataset consisted
of about 7,920 photos depicting the FKP gestures. A series
of experiments were done to investigate the impact of alter-
ations to the architectural design parameters of the models on
the achievement of optimal recognition accuracy. The findings
from our investigation indicate that the SCNNs and AlexNet
had remarkably high accuracy rates of 98.3% and 96.224%,
outperformed all other models. The accuracy rates reached by
different models are as follows: EfficientNet achieved an accuracy
rate of 98.176%, AlexNet achieved 96.224%, GoogleNet at-
tained 95.601%, ResNet50 achieved 92.598%, DenseNet achieved
81.224%, and VisionTransformer gave the lowest accuracy of
79.513%.

Index Terms—Finger Knuckle Print, Vision Models, AlexNet,
DensNet, EfficientNet, GoogleNet, shallow Convolutional Neural
Network, ResNet50, VisionTransformer.

I. INTRODUCTION

Because of the widespread use of computers and the advent
of the Internet, we now have easy access to information. As
consumers become more concerned about security of their
personal information, the user authentication mechanism is
gaining popularity. The usage of alphanumeric usernames and
passwords is the most frequent method of computer authen-

tication. The conventional password authentication solutions
are simple, but only if you know the password, because
user authentication is vulnerable [1], [2]. According to [3],
personal authentication is gaining attention in both academic
and industrial research due to its numerous applications such
as computer security, physical outlet control, law enforcement,
and banking, among others.

Because of the high level of consumer acceptance, hand-
based biometrics have received a lot of attention. Recently, the
finger-knuckle-print (FKP) has entered the biometric family
and been introduced for personal authentication [4], [5].

Woodard and Flynn were the first researchers to use the FKP
in their work, creating a database with the Minolta 900/910
sensor [6]. Woodard’s work have shown the FKP’s superiority
as a biometric. The limitations of the sophisticated capturing
procedure, as well as sensor weight, cost, and size, limited the
commercial application of this sensor. Later, as indicated in [3]
an imaging system is developed that employs a digital camera
focused against a white background under steady illumination
to obtain the finger back surface. The captured images then
preprocessed to evolve the finger knuckle zones, and then
analysis methods like Principal component analysis (PCA),
Linear discriminant analysis (LDA) and Incremental dynamic
analysis (ICA) were combined to make feature evolving and
matching. PCA, ICA and LDA are popular methods for feature
extraction and dimension reduction [7]–[9]. The device is
doomed to have a big size due to the sacrificially capturing of
the whole hand back area.

Unlike the previous systems, which capture the images
of the entire hand first and then evolve the finger or finger
knuckle surface zones, the work in [3] simplifies the following
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preprocessing processes by imaging the knuckle zone of the
finger instantly. As a result, the imaging system’s size is
significantly reduced, and its application is enhanced. The
inherent FKP patterns can be clearly captured since the finger
knuckle sags somewhat during acquisition, allowing the indi-
vidual characteristics of the FKP to be extracted accurately.

Machine learning techniques and deep learning methods
have been used to address the issue of personal authentication
[10]. In [11] researchers provide a Biometric Authentication
system based on deep learning techniques, in which the user’s
finger knuckle is used to improve system security. This model
can detect an authorized user based on a dominant finger
knuckle pattern using a Convolution Neural Network (CNN)
and extract features that are optimally compared to training
photos. CNN is widely used because it is proved to be very
successful for large scale image classification [12], [13].

Rachid Chlaoua et al. used deep learning techniques to
improve finger-knuckle-print identification system based on
PCANet and SVM classifier in [14]. Their research proposes
a novel methodology in which deep learning is used to
develop a multi-modal biometric system based on images of
FKP modalities whose features were extracted using principal
component analysis Network (PCANet). PCA is used in the
proposed structure to train two-stage filter banks, which are
then followed by basic binary hashing and block histograms
for clustering at feature vectors, which are then used as
input for classification by a linear multiclass Support Vector
Machine (SVM) [15], [16].

In another work deep neural networks were used with
batch normalized CNN for Finger Knuckle Print recognition
[17]. They proposed a batch normalized Convolutional Neural
Network (CNN) architecture with data augmentation for FKP
recognition. A Convolutional Neural Network (ConvNet/CNN)
is a Deep Learning system that can take in an image, as-
sign importance learnable weights and biases to different
aspects/objects in the image, and differentiate one from the
other [18]. When compared to other classification algorithms,
a ConvNet requires substantially less preprocessing. While
simple systems need hand-engineering of filters, ConvNets can
learn these filters characteristics with appropriate training [12],
[19].

In [20] authors added a step to preprocess FKP images
and then feature extraction algorithm is applied to extract
coefficients that will be used in the matching process.

Improved neural networks such as quantum neural network
(QNN), wavelet neural network (WNN), and quantum wavelet
neural network (QWNN) are utilized in the classification pro-
cess to achieve higher accuracy and faster convergence. This
study implements quantum computing (QC) in the framework
of the FKP recognition system. It offers the advantages of low
inexactness and rapid execution speed due to the use of the
quantum superposition state theory. Classic and deep neural
networks are significantly slow, often requiring thousands of
repetitions to reach the final response with an improbable
inaccuracy.To address these challenges, some academics have
suggested models that incorporate artificial neural networks

(ANNs) and quantum neural networks (QNNs) [21], [22].
The remainder of this paper is organized as follows: Sec-

tion 2 introduces the applied classification models, section 3
presents the experimental results and discussions. Ans section
4 is the conclusions.

II. METHODOLOGY

The performance of the suggested model is evaluated
through experiments conducted on a database provided by Poly
U. The database was produced from a sample of 165 volun-
teers spanning various age groups who placed their fingers
in front of the FKP acquisition device. Of the participants,
125 were male and the remaining individuals were female. In
each of the two distinct sessions of FKP picture acquisition,
a total of 6 images are acquired for each of the right index
finger, right middle finger, left index finger, and left middle
finger. Consequently, every participant contributed a total of 48
FKP photos. The database has a total of 7,920 FKP grayscale
photos, which are associated with 660 unique fingers. The
two sessions, during which the images were captured, were
separated by an average time gap of 25 days [23]. Figure 1
depicts the device and a sample of a captured photograph that
has undergone processing in order to extract the region of
interest (ROI).

Fig. 1.a: (a) Fig. 1.b: (b)

Fig. 1: (a) Finger Knuckle acquisition device, (b) ROI, [23].

The models employed for retraining and evaluating the per-
formance of our dataset are AlexNet, DensNet, EfficientNet,
GoogleNet, SCNNs, ResNet-50, and VisionTransformer. The
dataset is devided, where 80% is allocated for training and
validation, a 5-fold cross-validation is performed, and the
remaining 20% of the is designated as the testing set.

A. Shallow Convolution Neural Network

Shallow Convolutional Neural Networks are considered to
be an earlier iteration in the progression of deep learning
models utilized for the purpose of image recognition. While
lacking the depth and complexity of contemporary competi-
tors, shallow CNNs have played a crucial role in developing
the discipline. During the initial years of the 1990s, Yann
LeCun established the notion of CNNs by presenting the
LeNet-5 design. The primary objective of this architecture
was to facilitate the recognition of handwritten digits. Shallow
CNNs often comprise a limited number of convolutional
layers, which are then accompanied by pooling layers and fully
connected layers. The primary focus of these networks lies
in the acquisition of low-level properties, such as edges and
textures. Although shallow CNNs may not possess the same
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level of depth and hierarchical feature extraction capabilities
as deeper architectures such as ResNet or Inception, they
have shown to be useful in performing image processing
tasks by utilizing convolutional operations. The advantages of
simplicity and efficiency are particularly notable in situations
where there are constraints on computer resources or when
addressing image recognition jobs that are relatively uncom-
plicated [24].

B. Transfer Learning

In the field of deep learning, it is imperative for the model
to be exposed to a substantial volume of data during the
training phase in order to acquire a greater depth of knowledge
and proficiency. Deep transfer learning refers to the practice
of utilizing preexisting deep learning models to train on a
novel challenge. The primary objective of transfer learning
is to identify common knowledge that may be effectively
transmitted across different areas. In addition, appropriate
methods are developed to facilitate the transmission of gen-
eral knowledge [25]–[27]. Transfer learning consists of three
main types: instance-based transfer, feature-based transfer, and
shared parameter-based transfer. For a more comprehensive
understanding of each strategy, please refer to [28]. In the
classification system we have presented, pretrained models
were utilized as a result of the substantial volume of data that
necessitates significant computational resources for training
purposes. The utilization of pretrained models has been found
to expedite the learning process and result in time savings
[25], [29].

1) AlexNet: The AlexNet model was developed by Alex
Krizhevsky, Ilya Sutskever, and Geoffery Hinton. The model
was trained using the ImageNet dataset, which consists of over
15 million labeled images with high resolution and covers
22,000 distinct classes. The model demonstrates a remarkable
capacity to effectively and precisely categorize a vast col-
lection of over 1.2 million photos. The AlexNet architecture
leverages a graphics processing unit (GPU) to enhance the
accuracy and efficiency of image categorization tasks. The
neural architecture of AlexNet comprises a total of eight lay-
ers, which encompass five convolutional layers and three fully
connected layers. The quantity of parameters amounts to 60
million, while the number of neurons reaches 650,000. Please
refer to Figure 2 to see the architectural design of AlexNet.
Overfitting is a common occurrence when working with larger
datasets. To mitigate or minimize overfitting, researchers have
employed a well-established regularization technique called
dropout. Additionally, they have incorporated Rectified Linear
Units (ReLU), overlapping pooling, and data augmentation as
part of their approach [30]. The aforementioned characteristics
of the AlexNet model were essential in securing its win in
the 2012 ImageNet Large Scale Visual Recognition Competi-
tion (ILSVRC-2012), a yearly competition focused on image
classification. In the realm of deep learning, AlexNet made
a substantial contribution by propelling the research forward
and showcasing the efficacy of convolutional neural networks
(CNNs) in the domain of image classification tasks [31].

Fig. 2: Architecture of AlexNet model.

2) DenseNet: DenseNet, also known as Densely Connected
Convolutional Networks, is a significant advancement within
the realm of deep learning and CNNs. The architecture,
proposed in 2017 by Gao Huang, Zhuang Liu, Laurens van der
Maaten, and Kilian Q. Weinberger, was designed as a solution
to address the challenges posed by the vanishing gradient
problem and the inefficiencies observed in conventional CNN
structures. In contrast to traditional CNNs, DenseNet estab-
lishes connections between each layer and every other layer
in a densely connected manner. This architectural approach
facilitates the reuse of features and enhances the flow of
gradients across the network. The distinctive architecture of
this structure not only facilitates the training of deep networks
with a reduced number of parameters, but also promotes
the flow of information, resulting in enhanced accuracy and
generalization capabilities. DenseNet has densely connected
building blocks, referred to as dense blocks, that effectively
enable feature extraction and fusion. This characteristic ren-
ders DenseNet a resilient option for a range of computer vision
applications, including but not limited to image classification,
object identification, and segmentation [32]. The architectural
structure of the model is depicted in Figure 3.

Fig. 3: Architecture of DenseNet model. This structure consists
of three dense blocks, the layers between two adjacent blocks
called transition layers through which the feature maps sizes
are controlled.

3) EfficientNet: The EfficientNet model is a collection
of deep neural networks designed to reduce the number of
parameters required for training. This is achieved by the inte-
gration of many techniques, including convolutions, bottleneck
blocks, depthwise separable convolutions, and squeeze-and-
excitation modules. EfficientNet employs a predetermined set
of scaling coefficients to uniformly scale all dimensions of
depth, width, and resolution. The compound scaling strategy
is justified by the need to accommodate larger input images,
which necessitates the inclusion of additional layers to broaden
the network’s receptive field and an increased number of
channels to effectively recognize more intricate patterns within
the larger image [33]. The models are offered in several

2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and 
IoT (HONET)

64
Authorized licensed use limited to: Florida Atlantic University. Downloaded on April 07,2024 at 06:24:12 UTC from IEEE Xplore.  Restrictions apply. 



dimensions and are denoted as EfficieNet-B0, EfficieNet-
B1, EfficieNet-B2, and so forth. The architectural design of
EfficientNet is depicted in Figure 4. EfficientNet demonstrates
reduced processing time and hence incurs lower computational
expenses in comparison to alternative convolutional neural
network (CNN) architectural models.

Fig. 4: Architecture of EfficientNet model.

4) GoogleNet: The Inception architecture, sometimes re-
ferred to as GoogleNet, is a noteworthy advancement in the
progression of CNNs. It was created by researchers at Google
in 2014. The GoogleNet, led by Christian Szegedy et al., was
initiated to tackle the growing need for more complex and
efficient neural networks in the field of image recognition. The
distinguishing factor of GoogleNet was its inception modules,
which provided a unique approach of including different filter
sizes and parallel convolutions within a single layer. This
design facilitated the network in capturing features at various
dimensions and levels of abstraction, hence enhancing both
accuracy and computational efficiency. The utilization of 1x1
convolutions for dimensionality reduction, which effectively
reduces the number of parameters and processing cost, was
popularized by GoogleNet. The primary characteristics of this
model encompass the utilization of Inception modules, which
have yielded remarkable outcomes in the ImageNet Large
Scale Visual Recognition Challenge and have served as a
source of inspiration for future architectures such as Inception-
v2 and Inception-v3. The groundbreaking methodology em-
ployed by GoogleNet in its convolutional neural network
(CNN) architecture has established a fundamental framework
for deep learning models that are both highly efficient and pre-
cise. This influential technique has significantly impacted the
advancement of cutting-edge models in the field of computer
vision and beyond [34].

5) ResNet50: ResNet-50, also known as Residual Network-
50, is a widely recognized convolutional neural network struc-
ture that has had a profound influence on the domain of deep
learning, namely in the realm of computer vision applications.
ResNet-50, a neural network architecture, was developed in a
seminal publication by Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun in 2015. The primary objective of this
architecture was to tackle the difficulty of training neural
networks with a large number of layers. The historical basis
of this phenomenon may be traced back to the recognition
that as networks increase in depth, they are more suscep-
tible to encountering vanishing gradients, which impede the
progress of training. In order to address this issue, ResNet-50
introduced the novel notion of residual blocks, which enabled

the selective bypassing of specific layers. This architectural
innovation facilitated the training of deep neural networks with
enhanced efficacy. The ResNet-50 architecture is distinguished
by its extensive sequence of residual blocks, resulting in
a total depth of 50 layers. The primary characteristic of
this architectural design is the inclusion of skip connections
within each block, which facilitates the network’s ability to
capture intricate features while simultaneously ensuring fast
gradient movement. The innovative architecture of ResNet-50
has established it as a fundamental model in the fields of image
classification, object recognition, and image segmentation.
It has continually demonstrated exceptional performance in
a wide range of computer vision applications, consistently
surpassing previous benchmarks and achieving the highest
levels of accuracy and effectiveness [35]. The architecture of
the model is shown in Figure 5.

Fig. 5: Architecture of ResNet50 model.

6) VisionTransformer: The VisionTransformer (ViT) em-
ploys a distinct approach compared to the traditional design of
CNNs for the purpose of image classification. The architec-
tural design of ViTconsists of two main elements: a patch
embedding layer and a Transformer-based encoding layer.
The primary function of the patch embedding layer is to
transform the input image into a sequential arrangement of
flattened patches. These patches are subsequently subjected
to processing by the encoder. The patches are commonly
characterized by their non-overlapping nature and consistent
dimensions, typically measuring 16x16 or 32x32 pixels. The
encoder consists of a sequence of self-attention layers and
feed-forward neural networks (FFNs). The utilization of self-
attention layers in the model enables it to selectively focus on
specific segments of the input sequence, hence facilitating the
incorporation of extensive interdependencies among patches
[25]. FFNs are employed to apply non-linear changes to the
output of the self-attention layers. The Vit model incorporates
various supplementary elements, like layer normalization and
dropout, in order to enhance its performance and mitigate
the risk of overfitting. The ViT has been developed with the
objective of enhancing the processing of images in a manner
that is more versatile and adaptable compared to CNNs. This
is achieved by the utilization of self-attention mechanisms.
When CNNs to ViT, it is seen that ViT exhibits a significantly
higher computational cost. This characteristic renders ViT less
advantageous for certain real-time applications. Please refer to
Figure 6 for an illustration of the ViT architecture.
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Fig. 6: Architecture of VisionTransformer model.

III. RESULTS AND DISCUSSION

The initial dataset utilized for SCNN and AlexNet models
had dimensions of 220 X 110. Subsequently, the dataset was
expanded to dimensions of 224 X 224 for all other models.

During the evaluation of our scheme, we utilized assessment
criteria such as accuracy, precision, recall, specificity, and F1-
score. The following metrics are defined based on the values
of True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(5)

For the purpose of our image classification assignment, we
applied a total of seven distinct models. Six of these models
were developed based on the principles of transfer learning and
were optimized using the Adam optimizer. The primary aim of
this study was to develop and refine models capable of effec-
tively classifying the owner of finger knuckle patterns, while
also addressing the difficulties associated with discriminating
between comparable motions made by the knuckles. All seven
models were executed using the subsequent hyperparameters:
a learning rate of 0.001, 8 batches, an Adam optimizer, and
a stochastic gradient descent momentum of 0.9. The mod-
els DensNet, EfficientNet, GoogleNet, and ResNet-50 were
trained for 2 epochs, whereas SCNN, AlexNet and Vision-
Transformer were trained for a longer period of 50 epochs.
The SCNN architecture consisted of three convolutional layers,
filter sizes of 5x5 and 3x3, and max-pooling layers with small
pool sizes of 2x2, the ReLU was used as an activation function
and a softmax activation function for the output layer. The
performance of the models was assessed using a five-fold
cross-validation approach. Table I summarizes the metrics of
performance for the models under investigation compared to
other published works.

The performance evaluation findings of the seven models
are presented in Table I. It is evident that, overall, SCNN,

TABLE I: Metrics rates of performance for the applied clas-
sification models compared to previous published works.

Architecture Accuracy Precision Recall Specificity F1
AlexNet 96.224 96.754 96.224 99.974 96.181

DenseNet 81.224 87.711 81.224 99.843 80.333
EfficientNet 98.176 98.485 98.176 99.987 98.137
GoogleNet 95.601 96.375 95.601 99.968 95.449

SCNN 98.3 98.62 98.3 99.991 98.251
ResNet50 92.598 94.219 92.598 99.946 92.282

ViT 79.513 80.663 79.513 99.825 79.118
VGG16 [36] 90.08 NA NA NA NA

VGG19-F6 [37] 81.5 81.5 81.4 NA 81.4
ResNet34 [38] 79.02 NA NA NA NA

Deep CNN [38] 96.50 NA NA NA NA
FKPIndexNet [39] 97.25 NA NA NA NA

EfficientNet, AlexNet, GoogleNet, and ResNet50 respectively
exhibited high levels of accuracy in their performance. The
simple AlexNet and SCNN models outperformed some of
complicated models may refer to their sufficiency handling
such small sized datasets. The metrics of Precision, Recall,
Specificity, and F1-score are included in Table I to provide
further validation for comparing the models.

Nevertheless, the performance of the vision transform model
was shown to be inferior when compared to the other mod-
els. The need to resize the input data to match the fixed
input size of the original model is the reason behind this
phenomenon. To fulfill this criterion, the dataset underwent
a resizing operation to get dimensions of 224x224x3. During
the process of resizing, there is a possibility of losing essential
information, which might have an impact on the overall
performance. The utilization of data augmentation methods on
a Vision Transformer model, like random cropping, flipping,
rotating, or modifying brightness and contrast, has the ability
to introduce supplementary variations to the training data,
hence potentially enhancing the model’s performance.

Table I shown in this study provides a comprehensive com-
parison between the examined models and recent works that
have employed the same dataset [36]–[39] for their research.
Regarding the evaluation measures for this dataset, our models
exhibit encouraging performance. As a result, the experimental
findings validate the efficacy of the suggested methodology in
accurately categorizing and identifying FKP.

IV. CONCLUSION

In this paper, we used transfer learning and fine-tuning
for six pre-trained deep neural networks to study their per-
formance on FKP dataset provided by PolyU. SCNN was
employed for further studying of the model complexity re-
quired to handle such types of datasets. Our experiments
show that pre-trained models, such as EfficientNet, GoogleNet,
and AlexNet are vulnerable to performance compared to
other studied models. SCNN and AlexNet simple architecture
outperformed more complex models proving their efficiency
in handling small-sized datsets. In our particular scenario, we
have opted to evaluate the performance of the seven models
without employing data augmentation as a methodology across
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all models. In order to maintain a fair and impartial compari-
son among the seven models examined in our study, we have
abstained from employing any data augmentation techniques
in any of the models. This methodology enables us to evaluate
the intrinsic capabilities and performance disparities across
the models, solely considering their architectural design and
training procedure, while disregarding any further changes in
the data.
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