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Abstract—Driving is a complex daily activity indicating age-
and disease-related cognitive declines. Therefore, deficits in driv-
ing performance compared with ones without mild cognitive
impairment (MCI) can reflect changes in cognitive functioning.
There is increasing evidence that unobtrusive monitoring of older
adults’ driving performance in a daily-life setting may allow us
to detect subtle early changes in cognition. The objectives of this
paper include designing low-cost in-vehicle sensing hardware ca-
pable of obtaining high-precision positioning and telematics data,
identifying important indicators for early changes in cognition,
and detecting early-warning signs of cognitive impairment in a
truly normal, day-to-day driving condition with machine learning
approaches. Our statistical analysis comparing drivers with MCI
to those without reveals that those with MCI exhibit smoother
and safer driving patterns. This suggests that drivers with MCI
are cognizant of their condition and tend to avoid erratic driving
behaviors. Furthermore, our Random Forest models identified
the number of night trips, number of trips, and education as the
most influential factors in our data evaluation.

Index Terms—in-vehicle sensing, telematics data, machine
learning, cognitive impairment

This research was supported by the U.S. National Institute of Health
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1948066).

I. INTRODUCTION

The World Health Organisation (WHO) and National Insti-
tute of Health (NIH) reports reveal that the overall number of
people aged 65 and above quickly expands due to improved
health care and higher life expectancy. The predictions show
that by 2050, the percentage of the world’s population aged
65 and up will have increased from 10 percent in 2022
to 16 percent. About 19 percent of the people in North
America were aged 65 or older in 2022, making it one of the
regions with the highest proportion of older residents [1], [2].
Mild cognitive impairment (MCI) is an anomalous decline in
cognitive function that exceeds the predicted average decline.
Studies show that within six years, 80 percent of people with
MCI would develop Alzheimer’s disease (AD). On the other
hand, clinical concerns persist in differentiating MCI from
otherwise healthy conditions in older people [3]. A person
with MCI has a decline in cognitive abilities like memory,
language, and reasoning skills, having difficulty remember-
ing recent events or conversations, finding the right words,
planning, and organizing tasks. Although it is a condition that
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occurs between healthy brain aging and dementia, they can
still perform their usual daily activities. Some cases of MCI
may progress into dementia over time. MCI can be caused
by various factors, including age-related changes and certain
medical conditions, such as Alzheimer’s disease.

According to the Veterans Administration’s work group on
Driving Safety for Veterans with Dementia, older adults with
moderate to severe dementia should limit their driving due
to safety concerns [4]. Several studies describe how emotions
in daily life can affect human behavior and facial expression
[5]. Driving is a complex diurnal life activity and can indicate
age- and disease-related cognitive declines [6]–[8]. Therefore,
driving performance deficits compared with those without mild
cognitive impairment (MCI) can reflect changes in cognitive
functioning [9]. Research indicates that older people with
mild to severe dementia have limited physical and mental
abilities [3]. Determining age- and cognitive-related ‘fitness-
to-drive’ remains unspecified and controversial since driving
licensee varies by state. Current driver evaluation programs can
test only a small number of drivers with cognitive concerns,
missing many who need to know if they can continue to
drive safely. Importantly, no concrete scientific approaches
have been investigated to directly understand the current or
former status of cognitively impaired older drivers in daily
life [10].

Advances in wireless technology, local computing, and data
science can contribute to unobtrusively monitoring daily activi-
ties to assess real-world cognitive and functional changes [11]–
[13]. Sensing methods and monitoring tools were devel-
oped and applied to real-time data to assess patients’ well-
being [14]. The potential of using in-vehicle sensing to identify
cognitive impairment has recently been studied [15]. In-vehicle
sensing is a novel and unobtrusive idea for measuring driver
behavior and detecting cognitive deterioration. In-vehicle sen-
sors and their applications for monitoring driver behavior have
advanced significantly. Some vehicular and behavioral strate-
gies provide viable and inexpensive solutions for diagnosing
early dementia in older drivers based on driving character-
istics. [16], [17]. Older drivers show age-related changes in
driving behavior, such as traveling at a lower speed and self-
regulating driving [18]. The effects of aging on driving safety
prompted the development of a comprehensive program to
examine individual and medical information and to conduct
behavioral analysis for operational and GPS-based data [19].
Machine Learning methods have roles in validating the in-
teraction between the brain function and sensors [20], [21].
As a supervised machine learning method, Random Forests
demonstrated higher accuracy in identifying and reporting
anomalies [22]. Real-life driving data with machine-learning
approaches for demographic and behavioral factors show that
age, number of trips, race/ethnicity, time, and the number of
hard brakes have been the most accurate predictors of MCI
and dementia in older drivers [23]. Some machine learning
models could predict the most critical diagnostic factors, such
as Alzheimer’s disease genetics and individual and behavioral
patterns for older drivers [24].

However, high-quality sensing data and novel scien-
tific techniques that can distinguish cognitive-decline-related
changes from age-related ones to understand the impact of
cognitive impairment on driving behavior is missing [25].
Therefore, the authors have developed new programmable in-
vehicle sensing units with unobtrusive vision and telematics
sensors to track and record the subtle driver behavior of older
drivers. The novelty of the telematics units used in this study is
that they build on microcomputers and enable programmable
and expendable hardware and software capabilities. The in-
vehicle sensors installed 150+ older drivers’ vehicles since
2022 and tracked changes in older drivers’ cognitive func-
tioning in a daily-life driving setting. Our programmable in-
vehicle sensing units comprise a set of unobtrusive vision and
telematics sensors. The recorded changes in driver behavior are
compared to results from a battery of cognitive tests (executive
function, visuospatial, memory, and language) selected for
sensitivity to early subtle changes in cognition and ability
to predict driver risk. The collected data for the group of
participants under the study was analyzed and visualized using
statistical [26] and machine learning methods.

Fig. 1. In-vehicle Sensing System

II. DESIGN OF IN-VEHICLE SENSING

The authors developed a novel in-vehicle sensing system,
which includes telematics and vision sensing units, to collect
driver-behavior-related datasets unobtrusively (see Fig. 1). The
in-vehicle sensing system is installed on participants’ vehicles
for three years to collect longitudinal data streams to capture
changes in driving behavior over time. The five-year study was
conducted at Florida Atlantic University and the University of
Central Florida (UCF) for older drivers with or without MCI
and at least 65 with a valid driver’s license. The study involved
236 participants in the third year to evaluate drivers’ cognitive
and behavioral status. All participants completed the initial
evaluation form and provided written approval. Individual
sessions are subsequently organized every three months to
examine any changes in drivers’ health and vehicle conditions
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Fig. 2. Telematics Unit (TMU)

TABLE I
DBIS DEFINITION AND STATISTICAL OVERVIEW

— Driver Indexes —
Index Description Statistical Remarks

Min Max Mean StDev

MCI The diagnosis for MCI
(1: MCI; 0: non-MCI) 0 1 - -

Age The participants with 65 years old and above 65 89 75.67 6.04
Gender Male; Female - - - -

Race
1:Black; 2:White; 3:Asian;

4:Native American;
5:Multiracial; 6:Others

- - - -

Ethnicity

1:African-American ;
2:European-American;
3:Hispanic-American;

4:Afro-Caribbean;
5:Asian-American;

6:Others

- - - -

Education

Grade school; High school;
Some college; Technical school;

Associate degree; Bachelor’s degree;
Post-graduate studies; Master’s degree;
Post-master’s degree; Doctoral degree

- - - -

Retired No; Yes - - - -

BMI
Body Mass Index

(Obese: greater than 30;
non-Obese: lesser than 30)

- - - -

— Driving Indexs —

Total Trip Unit: No.
The total number of trips 5 693 266.57 174.81

Night Trip Unit: No.
The number of trips at night 0 58 5.8 11.56

Peak Trip
Unit: No.

The number of trips at peak hours
(7:00 to 9:00 and 16:00 to 18:00)

0 596 222.97 156.09

Duration Unit: s
The duration of each trip per second 0 38658.26 1280.95 2029.02

Distance Unit: km
The distance of each trip per kilometer 0 412.35 10.59942 20.55902

Speed Unit: km/h
The speed in kilometers per hour 0 158 26.74934 10.99516

RPM The revolution per minute 0 5698.25 1118.675 194.8706

nH-Acceleration

Unit: No.
Number of harsh-acceleration

(The number of events with an acceleration
greater than 3.943 m/s2 on the X axis)

1 233 3.005261 6.084068

nH-Braking

Unit: No.
Number of hard-Braking

(The number of events with an acceleration
greater than -3.943 m/s2 on the X axis)

1 123 3.614141 9.438562

nH-Turn

Unit: No.
Number of hard-turns

(The number of events with an acceleration
greater than -3.943 m/s2 on the Y axis)

1 51 2.506608 2.671595

Urban Trip Unit: No.
The number of trips below 32 kilometers - 7742 - -

Suburb Trip Unit: No.
The number of trips above 32 kilometers - 38 - -

and to complete related clinical tests, including the Montreal
Cognitive Assessment (MoCA), Loewenstein-Acevedo Scales
of Semantic Interference and Learning (LASSI-L).

A. Programmable Telematics Units

This study leverages TMUs developed by AutoPi, which
build on Raspberry Pi 4 Model B. Fig. 2 shows an overview
of the Raspberry-based TMU units. These programmable and
open-sourced TMUs support the robust system expandability
of hardware and software, allowing the development of cus-
tomized TMUs to adjust and modify the sensing parameters
(e.g., data collection algorithms and sampling frequencies).
Each TMU comprises 1) a GPS sensor, 2) an inertial mea-
surement unit (IMU), 3) an OBD connector, 4) a 4G/LTE
cellular modem, 5) an SD card, and 6) a USB flash drive. Tri-
axial gyroscopes are added to the TMUs to capture angular
velocity. It continuously monitors the voltage levels from the
port. When the voltage goes down to 12V, it automatically goes
into sleep mode for five minutes. After waiting for another 5
minutes, the device goes into hibernate mode. The power usage
of the AutoPi in its sleep and hibernation mode is as follows:
around 30mA and 10mA.

In-vehicle data can be collected from the Controller Area
Network (CAN bus) [27], [28] and augmented sensor hard-
ware. Within a group of vehicles, CAN allows the engine
control unit (ECU), transmission control unit, brake system
control unit, steering system control unit, and others to ex-
change information quickly and efficiently, providing access
to vehicle status data such as sensor readings, control signals,
and diagnostic information. One of the most common ways
of obtaining CAN bus data is using On-Board Diagnostics
(OBD) connectors. Available OBD data includes engine RPM,
vehicle speed, and fuel system status. In addition to the OBD
data, additional data can be collected from augmented sensor
hardware, such as GPS and inertial measurement unit (IMU)
modules. Furthermore, various unobtrusive sensing units can
be installed on a vehicle to understand the state of drivers [29].

III. DRIVER BEHAVIOR INDEXES

This study used 7794 data points with 19 indexes over
two years (see Table I). The indexes included 19 independent
variables as inputs denoted by the matrix of X ∈ Rm×n,
given by Eq. 1 to predict the presence or absence of MCI as
the dependent or output variable. Considering the values 0 for
the absence of MCI (non-MCI) and 1 for the presence of MCI
as yi ∈ {0, 1} for i = 1, ...,m, the vector of Y ∈ Rm has been
obtained. m represents the number of samples, and n is the
number of independent variables. Therefore, the values of m
and n are 7794 and 19, respectively.

X =

x11 · · · x1n

...
. . .

...
xm1 · · · xmn

 and Y =

 y1
...
ym

 (1)

Some indexes refer to drivers’ characteristics and health
circumstances, such as age, gender, race, ethnicity, education,
and body mass index (BMI). Both males and females were
required to be at least 65 years old. We examined their
race/ethnicity to see how their physical traits, nationality,
religion, linguistics, or culture influence their driving patterns.
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To define race/ethnicity, we evaluated six categories for each.
The education and employment status of the participants
can reveal information about their social, psychological, and
economic situation. We divided them into ten groups based
on their education level and whether they are employed or
retired. Body mass index (BMI) is a unit for calculating body
fat by the height and weight of individuals. We classified
participants into obese and non-obese groups. We defined a set
of indicators for driving features. We studied the total number
of trips, the number of trips between 21:00 and 5:00 as night
trips, and the number of trips from 7:00 to 9:00 and 16:00 to
18:00 as peak hours trips. Driving characteristics are kinematic
factors such as trip duration and distance, speed, rpm, and
acceleration. The number of harsh acceleration, hard braking,
and hard turns was determined. When the acceleration on the
X-axis reaches 3.943 m/s2, it is called harsh acceleration; when
the acceleration on the X-axis surpasses -3.943 m/s2, it is
deemed hard braking. A hard turn is defined as an acceleration
greater than -3.943 m/s2. We evaluated the types of trips
following their mileage. Urban trips are defined as distances
between 0 and 32 km, whereas suburban trips have a distance
greater than 32 km [30].

IV. DATA ANALYSIS

The in-vehicle data are further analyzed to characterize
driver behavior indexes (DBIs) that can reflect physical and
cognitive functions over time.

A. Data Prepossessing

We combined the quantile normalization method to normal-
ize data distribution and quantile-based flooring and capping to
treat outliers, with flooring for lesser values (10th percentile)
and capping for higher values (90th percentile). The skewness
value dropped for all features after applying this method (e.g.,
nH-Acceleration decreased from 15.33 to 1.56.).

B. Machine Learning Technique

We used a supervised machine learning algorithm named
Random Forests (RF) for classification purposes. This en-
semble learning method integrates multiple machine learning
models to improve their performance. Numerous Random
Forest algorithm decision trees have been built on a different
random subset of training data and features. Each training
tree is to predict the target variable, and the final prediction
is based on the mode of all the trees’ predictions. The
random forest training algorithm extends the generic bagging
technique to tree learners. Bagging repeatedly (b times) has
a random selection with the substitute of the training set and
fits trees to these samples, given a training set X = x1, ..., xi

with responses Y = y1, ..., yi for B = 1, ..., b, where i is
the number of training samples and b shows the number of
trees. We developed Random forest classification models with
multiple decision trees of (1) only age; (2) the number of trips
(for total, peak hours, and night hours); (3) driver variables;
(4) driving variables; (5) age with driving variables (6) All
the variables to predict MCI status. These six groups show

the contribution of each variable in predicting MCI status and
the model’s performance.

49.6%

34.9%

14%

1.47%

Afternoon
Morning
Evening
Night

Fig. 3. Trip Distribution based on Time of Day

V. RESULTS

A. Statististical reports

We analyzed the time of day for a subset of the participants.
We divided the time into four categories: 5:00 to 11:59 as the
morning; 12:00 to 16:59 as the afternoon; 17:00 to 20:59 as the
evening; and 21:00 to 4:59 as the night. Fig. 3 represents the
number of trips in each category using a pie chart. According
to the results, half of the trips occur between 12:00 and 16:59,
meaning participants prefer to drive more in the afternoon
and less at night. Considering 34.9 percent for morning trips,
older drivers prefer driving during daylight. Fig. 4 depicts the
three-month aggregated data for participants with and without
MCI, which presents changes in their driving patterns during
quarterly visits.

B. Random Forests Model

Table II reports the performance metrics and confusion
matrix for the developed model in six groups. The first
model represents the contribution of age as the only variable
for evaluation. The obtained accuracy needs to show better
performance for this model. The second model considered only
the number of trips for three categories: the total number of
trips, the number of trips at night, and the number of trips
for peak hours. This model offers a better performance in
comparison to the first model. Model 4 is related to only
drivers and their demographic characteristics. This model
evaluates age, gender, ethnicity, education, race, body mass
index (BMI), and employment status. The performance result
is approximately similar to the first model. Models 4, 5, and
6 recruit driving variables with three different preferences
involving driver variables with orders of no driver variables,
only age, and all driver variables. All these three models show
a similar performance as a result.

VI. CONCLUSION

This research addresses the pressing problem of identifying
and assessing mild cognitive impairment (MCI) among older
drivers using in-vehicle sensing technology and machine learn-
ing methods. This study aims to develop a system capable
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Fig. 4. Quarterly Evaluation Reports ((a)-non-MCI; (b)-MCI)

TABLE II
EVALUATION OF RANDOM FOREST MODEL PERFORMANCE METRICS

Model Input Accuracy AUC Precision Recall F1
Score

Confusion
Matrix

Predicted Observed
0 1

1 Only age 0.79 0.87 1.00 0.70 0.82 0 1242 533
0.60 1.00 0.75 1 0 797

2 Number of trips
(total, peak, night) 0.86 0.91 0.83 1.00 0.91 0 1775 0

1.00 0.54 0.70 1 366 431
3 Driver Variables 0.82 0.87 0.79 1.00 0.88 0 1774 1

1.00 0.41 0.58 1 468 329
4 Driving Variables 0.78 0.93 0.75 1.00 0.86 0 1775 0

1.00 0.28 0.43 1 576 221
5 Age with driving variables 0.86 0.94 0.83 1.00 0.91 0 1774 1

1.00 0.54 0.70 1 366 431
6 All the variables 0.86 0.95 0.83 1.00 0.91 0 1775 0

1.00 0.54 0.70 1 366 431

Fig. 5. Importance of Features

of recognizing early signs of cognitive decline and provid-
ing appropriate interventions to ensure the safety and well-
being of older drivers. Integrating sensors such as cameras,
accelerometers, and the telematics unit into vehicles enables
the collection of various data points related to driving behavior,
vehicle dynamics, and driver interactions. These data points
serve as valuable indicators, helping to reveal subtle alterations
associated with MCI. The potential benefits of these systems
are undeniable. Early identification of MCI can enable timely
intervention and support for older drivers, improving safety
while prolonging independence and mobility. By harnessing
in-vehicle sensing technology and machine learning tech-
niques, this study opens the way to developing intelligent
systems capable of responding in real-time to diverse driving
scenarios and detecting and assessing MCI.

This system can classify and predict MCI in real time by
training machine learning models on diverse datasets. These
models may provide timely interventions, such as alerts or
adaptive driving assistance, to support older drivers with MCI
and mitigate potential road risks. Machine learning techniques
offer several advantages in this respect, allowing for the
creation of models that can recognize anomalous patterns or
conditions indicative of MCI, adapt, and improve over time
as more data is collected and analyzed. In addition, quickly
processing large amounts of data enables real-time monitoring
and decision-making that allows prompt responses to changing
cognitive states. Depending on the training data’s quality,
there can be various challenges and considerations related
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to the accuracy and reliability of machine learning models.
Collecting diverse and comprehensive data sets accurately
representing MCI-related driving behaviors and patterns is
protracted. Ensuring the privacy and security of the data collec-
tion process is also essential. Measures taken must anonymize
and protect sensitive personal data while permitting practical
analysis.

Overall, this study aims to assist in designing advanced
assisting systems for supporting older drivers while driving.
The findings provide insight into novel solutions that improve
road safety and quality of life for older drivers with mild
cognitive impairments.
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