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Abstract
Dermoscopy is a noninvasive way to examine and diagnose skin lesions, e.g. nevus and 
melanoma, and is a critical step for skin cancer detection. Accurate classification of der-
moscopic images can detect skin cancer at an early stage and bring social and economic 
impact to patients and communities. Using deep learning methods to classify dermoscopic 
images has shown superior performance, but existing research often overlooks the class 
imbalance in the data. In addition, although a handful of public datasets are available for 
skin cancer research, these datasets are generally not large enough for deep learning algo-
rithms to produce accurate results. In this paper, we propose to use data augmentation and 
generative adversarial networks (GAN) to tackle class-imbalanced dermoscopic image 
classification. Our main objectives are to determine (1) how state-of-the-art fine-tuned deep 
learning models perform on class-imbalanced dermoscopic images, (2) whether data aug-
mentation and GAN can help alleviate class imbalances to improve classification accuracy, 
and (3) which method is more effective in addressing the class imbalance. By using public 
datasets and a carefully designed framework to generate augmented images and synthetic 
images, our research provides clear answers to these questions. Code and data used in the 
study are available at: https://​github.​com/​mjan2​021/​Dermo​scopic-​image-​class​ifica​tion.​git
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1  Introduction

Skin cancer is a common and potentially deadly disease affecting millions worldwide. 
Melanoma is the most frequent type of skin cancer involving an uncontrolled prolifera-
tion of pigmented cells. A potentially fatal condition, it is more common in people with 
lighter skin tones and can spread swiftly throughout the body [1]. Consequently, melanoma 
patients have a better chance of survival if their disease is detected and treated early.

A skin examination requires the expertise of medical specialists and access to diagnos-
tic equipment [1]. Dermoscopy is a non-invasive diagnostic method that magnifies skin 
lesions, specially pigmented and non-pigmented ones. A dermoscope magnifies and illumi-
nates the skin lesion using polarized light. This lets the dermatologist evaluate the lesion’s 
features and detect characteristic patterns and structures to help diagnose skin disorders. 
Melanoma, basal cell carcinoma, and squamous cell carcinoma are diagnosed with der-
moscopy. It can detect moles, warts, and eczema. The dermatologist can better diagnose a 
lesion by studying its blood vessels, pigmentation patterns, and other morphological traits. 
This can lead to early and more successful therapy [33]. Dermatologists examine dermos-
copy images for specific characteristics, i.e., asymmetrical patterns, erratic borders, lots 
of colors, and different pigmentations. They may also search for “dots and globules” to 
suggest blood vessels in the skin and “streamers” to show malignant cell spread. Scaling, 
crusting, and thickening may also indicate skin cancer. Dermatologists can diagnose skin 
cancer by examining these photos [34]. Manual diagnosis could be incredibly time-con-
suming and costly. Therefore, it is essential to develop methods to reliably differentiate 
between malignant skin cancers like Melanoma and less severe conditions like Melano-
cytic Nevi, Benign Keratosis, Dermatofibroma, Actinic Keratosis, and vascular lesions.

Deep learning has recently revolutionized the medical field as well as many other 
domains. In light of this, numerous studies have been conducted with Convolutional Neural 
Network (CNN) being primarily used as a base model to detect and classify skin diseases 
[58]. CNNs represent the backbone of visionbased deep learning models and are particu-
larly effective for image recognition tasks. Other approaches also employ numerous deep 
learning models to improve model performance and address data imbalance by using data 
augmentation techniques such as rotating, flipping, or resizing images [45].

Dermoscopy image processing frequently suffers from data imbalance, especially when 
it comes to determining whether a skin lesion is benign or malignant. The dataset is skewed 
since benign lesions are far more common than malignant ones. Any data-driven algorithm 
used to categorize skin lesions would suffer a bias toward benign classification caused by 
the skewed dataset used for training. In turn, this could mean that the algorithm is less 
reliable in identifying malignant tumors, which could result in failure to detect cancer at 
an early stage. Oversampling the minority class (malignant lesions) or undersampling the 
majority class (benign lesions) and applying methods like costsensitive learning or class 
weighting are all viable options for resolving data imbalance in dermoscopic pictures. It’s 
possible that the best outcomes could be achieved by employing a combination of these 
methods [35]. Another way to improve model performance is to address the imbalanced 
dataset problem directly. A CNN model 1 showed tremendous improvement in classifica-
tion accuracy due to implementing data augmentation techniques such as rotating, flipping, 
or resizing images. This method alleviates class imbalance by using augmented images to 
populate the dataset, thus reducing class imbalance.

In this paper, we study the improvements that could be made to deep learning model 
performance on imbalanced datasets. For this purpose, four state-of-the-art deep-learning 
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models were trained to detect Melanoma and other skin abnormalities. We utilize data aug-
mentation techniques following the work presented in [1], showing a huge improvement in 
classification. Furthermore, we investigate the efficacy of training a deep learning model 
on synthesized data. New data was generated using a generative adversarial network model 
(AC-GAN) that was trained to generate dermoscopic images in order to populate the data-
set and alleviate class imbalance.

2 � Related work

2.1 � Deep learning for dermoscopic image classification

Many medical professionals have benefited from the extensive study of images for diag-
nostics and detection of cancer by analyzing skin lesions, especially for breast and skin 
cancers. Image classification is an area where deep learning techniques have been shown 
to excel [1]. There has been a great amount of work done on Melanoma skin cancer detec-
tion over the years. However, many researchers struggle with the lack of accessible, high-
quality data sets. Healthcare institutions have been reluctant to make their data publicly 
available for cancer research for reasons related to patients’ right to privacy. These obsta-
cles notwithstanding, advancements in cancer research have yielded significant results that 
have helped tremendously medical practitioners in combating cancers. In this section, we 
provide an overview of the published research on the topic of Melanoma skin cancer diag-
nosis using machine learning techniques. Machine learning algorithms can analyze images 
of skin lesions, and the ones that look suspicious can be flagged as probable cases of skin 
cancer. Using photos labeled as Melanoma or Non-Melanoma, researchers [1, 20, 22] 
investigated the efficacy of using (CNNs) to detect skin cancer. On the topic of skin lesion 
classification, CNNs have been found to perform better than more conventional machine 
learning techniques like support vector machines (SVMs) and decision tree classifiers. 
Unfortunately, other types of skin diseases are ignored by this method of binary categoriza-
tion [23].

Deep learning models are now commonly used in different fields [74, 75, 77]. In pre-
vious studies, researchers employed VGG16, VGG19, and InceptionV3, and obtained 
accuracy of 77%, 76% and 74%, respectively [76]. Many industrial professionals are also 
reviewing such studies, pointing out the gaps between the research and industrial usage of 
those studies. [78–80]. Another deep learning model-based study used for the classifica-
tion of skin lesions was conducted on the HAM10000 dataset by employing the pre-trained 
ResNeXt101 and the ensemble IneptionResNetV2 With ResNeXt101. They were able to 
obtain an accuracy of 93.20% and 92.83% respectively [17].

In addition to CNNs, other types of machine-learning algorithms have also been 
explored for skin lesion classification. For example, some studies have used random for-
ests, a type of ensemble learning algorithm that combines the predictions of multiple deci-
sion trees to improve the model’s overall accuracy. Other studies [14, 15, 24, 66] have 
explored the use of hybrid algorithms that combine elements of CNNs with other types of 
machine learning algorithms. For example, some studies have used a combination of CNNs 
and support vector machines (SVMs) to improve the performance of skin lesion classifica-
tion models.

Some of the studies used a two-stage approach by using segmentation to extract features 
of the skin lesion and then using classification to identify the type of lesion [59]. A survey 
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conducted on segmentation models for deep learning divides the research into several 
types, i.e., single Network models, multi-model networks, transformer models, and hybrid 
feature models [60]. Most of the single network models are either fully connected [61, 62] 
or Ushaped [63, 64]. Multi-model networks are divided into standard ensembles [65, 67], 
multi-task model [68, 69] and GANs [70, 71]. Transformers initially introduced for natu-
ral language processing have performed pretty well in other areas, especially in computer 
vision. TransNet was one of the initial works that used transformers alongside CNNs for 
medical images [72], which was further proven by studies [73]

This approach, however, is not limited to only skin lesion classification but can also be 
used for detecting COVID-19 [15]. while another study is being conducted to analyze the 
driving pattern of older drivers using such algorithms to detect early-stage dementia [14, 
36]. They are also quite accurate in recognizing emotions [53] as well in detecting levels of 
diabetics [54]

2.2 � Sample bias in skin lesion detection

One challenge in using machine learning algorithms for skin lesion classification is the 
limited availability of high-quality, annotated datasets. The HAM10000 dataset [13] is a 
commonly used dataset for research on skin lesion classification, but it is relatively small 
and may not be representative of the full range of skin types and conditions. As a result, 
many studies [26–28] have focused on developing methods to improve the generalization 
capability of machine learning models trained on this dataset.

Skin cancer disproportionately affects certain populations, such as people with lighter 
skin tones, and this can lead to imbalances in the training data. As a result, one issue iden-
tified in using machine learning algorithms for skin lesion classification is the potential 
for bias in the training data due to the limited number of samples for certain labels. These 
imbalances can cause machine learning models to be biased towards the majority class and 
may lead to lower accuracy on the minority class. To address this issue, some studies have 
used techniques such as oversampling or undersampling to balance the training data and 
improve the performance of the machine learning models. Some studies were conducted in 
which novel approaches like multi-weight new loss and endto-end learning strategies were 
introduced to deal with the bias of the data [28] while another study introduced supervised 
contrastive loss and focal loss to deal with the issue of bias in the dataset [37]. Also, by 
deep-clustering, the cluster separation in embedding space improves the metrics in detec-
tion when there is bias in the data [38]. Attention-based models can be very useful when 
dealing with bias, and they are, as of today, in high focus. Using Grouping of multi-scale 
attention blocks helps extracts feature on a fine-grained level of the lesions, which leads to 
improved performance [39].

While using novel approaches and state-of-the-art methods increases the performance 
and accuracy of the lesion detection areas, a typical approach like data augmentation 
should also be kept in mind as it could significantly affect the metrics. Such methods are 
considered a low-cost plug-and-play approach that can be used to increase performance 
and accuracy by choosing the best arguments among the list of augmentations for skin 
lesion classification [40].

In a previous study [41], a deeply discriminated GAN (DDGAN) is used to synthesize 
high-resolution images while keeping the image’s features as much realistic as possible. 
DDGAN employs several discriminators, which help the generator recreate much more accu-
rate synthetic images [41]. Alongside DDGAN, skin lesion style-based GAN is used that is 
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based on the same architecture of the style-based GAN, which can synthesize high resolution 
and feature enriched skin lesion images [42].

In summary, although GAN and data augmentation have been previously studied for der-
moscopic image classification, there is no research investigation on the performance compari-
sons of GAN vs. data augmentation, especially in the biomedical domain. A previous study 
[55] has compared GAN-based generative modeling for dermatological applications and 
suggested that “the results archived in different scenarios do not differ much”, meaning that 
GANgenerated dermatological images have limited contribution to learning. Our research sys-
tematically studies synthetic samples generated from GAN vs. from data augmentation and 
investigates which approach is likely more useful for dermoscopic image classification in tack-
ling class imbalances.

2.3 � Interpretable skin lesion detection

The interpretability of deep learning models has been a challenge for AI-driven applications. 
The complexity of the internal components of a deep learning model made it impossible to 
interpret its decision. Thus, deep learning models have been described as a black box for years.

This lack of transparency between the input and output of the model made the decision-
making process vague and uninterpretable, thus increasing the barrier of entry for deep 
learning-based applications in various fields, such as the medical field. Furthermore, under 
the General Data Protection Regulations (GDPR) in Europe [49], individuals are entitled to 
receive an explanation regarding the decisions made by computer algorithms, including those 
generated by deep learning models.

To tackle this problem of deep learning, interpretability researchers have focused on devel-
oping tools and methods that would explain the decision-making process of a deep learning 
model. GRAD-CAM [50] stands for (Gradientweighted Class Activation Mapping), is a visu-
alization tool that was developed by researchers at Georgia Institute of Technology. GRAD-
CAM generates a heatmap highlighting the most important regions leading to the model’s 
decision. A similar approach was introduced [51] where the researchers propose a method for 
interpretability. This method coined CAV stands for “Concept Activation Vector”. It captures 
the relationship between the model’s internal representations and a user-defined set of con-
cepts related to skin lesions.

Another direction in the research community [31, 32] focused on integrating machine 
learning models that are more interpretable with deep learning models. This approach lever-
ages the deep learning model’s ability to extract features, thus using these models for fea-
ture extraction, not classification. Furthermore, machine learning models such as decision tree 
classifiers would be used for classification. These methods rely on the fact that rule-based sys-
tems can provide more transparent explanations of their predictions.

Models trained on sensitive data that significantly impacts a person’s life need to be veri-
fied in sensitive professions like dermatology. One factor is not sufficient to make a decision, 
and therefore methods need to be verified by techniques that explain and supports the decision 
made by the model.
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3 � Methodology

Imbalanced data problem has been studied in the literature [6]. For example, HAM10000 
[13] dataset used in our experiments is highly imbalanced with class “NV” consisting of 
67% of the samples. This leads to biased classification towards the majority class by the 
model, which is a major problem in the research community. Solutions could be either at 
the data level where sampling techniques are adopted or at the model level where classifier 
decision is being weighted in proportion to class distributions [6].

In this research, we present an experimental scheme that allows the comparison, on the 
classification of skin lesions, between using GAN generated samples vs. using data aug-
mentation methods by training different transfer learning models for classification.

3.1 � Framework for imbalance dermoscopic image classification

HAM10000 dataset contains 10,015 images of size 600*450 stored in one directory and 
coupled with a CSV file that contains metadata on the image, including the class it belongs 
to. A custom dataset class was built using the PyTorch library to read the data and be inte-
grated into PyTorch DataLoader throughout all the experiments.

Figure  1 shows the workflow of splitting and balancing the dataset. The original 
HAM10000 [13] dataset consists of 10 k images belonging to 7 classes. A portion of the 
HAM10000 dataset is kept aside for test purposes. It is split in a way that the ratio of the 
classes is kept the same hence the term stratified split. Test split consists of 20% of the orig-
inal data and the rest 80% is filtered by selecting the minority classes because the majority 
class NV already consists of takes 67% of the images from the original dataset. The Num-
ber of minority class images is 3.3k, which are then used in both approached Augmenta-
tion and GAN to generate and balance the dataset. The Augmented images used mentioned 
techniques (Fig. 2), and to balance it with the NV class, 10 × images are generated with 
each image using multiple techniques for augmentation. The total number of augmented 
images belonging to 6 classes is 36,981, which are then split into training and validation 
split with a fivefold cross-validation approach to train the models. The same approach is 
applied to the GAN model, which is trained on the minority class images belonging to 6 

Fig. 1   Proposed framework and data pipeline for comparative study of GAN vs. data augmentation for 
class imbalanced dermoscopic image classification. The dermoscopic images are split into training and test 
sets. Samples in the training set are used to train GAN and also generate augmentation samples for minor 
classes, respectively. The GAN-generated synthetic samples and data augmentation-generated synthetic 
samples are concatenated with majority class samples to fine-tune pre-trained models. The fine-tuned mod-
els are then compared on the same excluded test samples to study the algorithm performance comparatively
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classes, and then it is used to generate an equal number of images keeping the ratio the 
same as the NV class. The total number of images generated by the GAN model is 36,926.

A few prepossessing steps were introduced to the dataset. Images were resized to 
224*224 for all models. This reduces the computation load on the system and maintains 
proper resolution for the images. Furthermore, images were converted to tensors to be 
passed to the model. [2] used further prepossessing steps like removing hairlines from the 
image; however, we found this to be irrelevant to the performance of our models.

3.2 � Data augmentation

Using deep learning for image classification frequently necessitates a substantial amount 
of training data for classification models, which is especially true for cancer detection. This 
method prevents the training model from becoming excessively data-specific [4]. Data 
augmentation is a technique used to extend the amount of a dataset for computer vision 
applications. This can be accomplished by transforming the existing data, for as by rotat-
ing, scaling, or cropping photographs. By supplying extra examples of the same object in 
various positions or situations, these changes improve the model’s generalization to unseen 

Fig. 2   Examples of data augmentation using different operators (we use TensorFlow ImageDataGenerator 
in the experiments). The augmentation is carried out using single operators as well as a random combina-
tion of multiple operators
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data. Data augmentation is especially beneficial when working with tiny datasets since it 
can boost the model’s performance [52].

Vasconcelos et  al. [5] provided a data augmentation strategy for the Melanoma data-
set. This technique was utilized to rotate, flip, and crop the photos to maximize the likeli-
hood of correctly detecting Melanoma and achieve a greater accuracy rate. Diallo et  al. 
[4] applied various data augmentation techniques, including color modification, to improve 
the pictures. In addition to the data augmentation options, the stratification method is 
employed to prevent biased sampling. By establishing explicit criteria used to divide the 
data into the train and test sets, the stratification approach minimizes any risk of bias in the 
data-splitting operation. This prevents random data splitting and reduces bias in the data-
splitting procedure.

Inconsistency within image datasets structures is another commonly encountered issue. 
For example, the image’s size and form can vary between instances. When such inconsist-
encies exist during model training, the resulting model is ineffective [3].

3.3 � Generative adversarial network

Generative Adversarial Network has witnessed wide adoption in the research commu-
nity since its inception [30]. GANs are used to generate realistic synthetic images that are 
almost indistinguishable from real images, making GAN a desirable solution to increase 
training data size by generating new data samples. This process is more cost-effective than 
acquiring new data and annotating it. GAN models are trained to effectively generate artifi-
cial images that are as close to the real images as possible.

A GAN consists of two neural networks: a generator network and a discriminator net-
work. Both networks are trained simultaneously in an adversarial manner. The generator 
network is trained to generate data samples that are similar to the data used in training, as 
defined in Eq. (1), while the discriminator network is trained to differentiate between the 
generated samples and the real data, as defined in Eq. (2) where X is a genuine (i.e. Xreal) 
or a fake (i.e. Xfake) image and S = {0,1} define a fake or a genuine image, respectively as 
shown in (Fig. 3).

Both networks are trained in an adversarial manner where the generator is learning to 
generate samples that pass the discriminator without being detected as fake. This is ena-
bled by maximizing the log-likelihood function defined in Eq. (3) until convergence.

In this paper, we train Auxiliary Classifier GAN (AC-GAN) [7] architecture to generate 
synthetic samples to balance the minor classes. AC-GAN is an extension of the DCGAN 
[43], and a unique characteristic of AC-GAN, compared to GAN, is that it can generate 
synthetic data belonging to a specific class. This makes AC-GAN a useful model for tasks 
such as image classification, where the goal is to generate images belonging to a specific 
class. On the other hand, the DC-GAN is often used to generate realistic images without 
specific conditions.

(1)Xfake = G(z)

(2)P(S|X) = D(X); S = {0, 1}

(3)�() = E[logP(S = 1|Xreal)] + E[logP(S = 0|Xfake)]
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3.3.1 � AC‑GAN training and data augmentation

An AC-GAN has the same architecture as a traditional GAN model. It is comprised of two 
models, a “Generator” and a “Discriminator” as shown in Fig. 4. AC-GAN’s distinction is 
the ability to generate images belonging to a specific class rather than generating images 
randomly. The generator, i.e. G(·), takes the class label and random points from the latent 
space and outputs the generated image belonging to the same class, as defined in Eq. (4).

The discriminator model, on the other hand, takes the generated image as an input and 
predicts two values, the probability of this image is real or fake, and the class labels the 
image belongs to. This is enabled by maximizing the sum of the log-likelihood of the fake/
real image classification ℓ(), as defined in Eq. (3), plus a log-likelihood of the correct class 
ℓ()C, as defined in Eq. (5).

For this study, the AC-GAN model was trained to generate images for the minority 
classes (all classes but NV). Our goal was to balance the dataset with a 1:1 ratio between 
all classes. In that manner, we generated samples that, when added to the original data, 
would equate to a total of 6,705 images, which is the number of NV samples present in the 
dataset. Figure 12 shows the data distribution of the original dataset as well as the number 
of generated samples added to the dataset.

Overall, training an AC-GAN is similar to training a regular GAN but with an additional 
step of conditioning the generator based on class labels. It is important to carefully design 
the architecture and loss functions of the networks in order to achieve good performance. 

(4)Xfake = G(C, z)

(5)�()C = E[logP(C = c|Xreal)] + E[logP(C = c|Xfake)]

Fig. 3   Generative Adversarial Network (GAN) for synthetic dermoscopic image generation. A number of 
genuine dermoscopic images are used to train a generator (i.e. a neural network) which generates synthetic 
images. A discriminator (i.e. a second neural network) is trained to differentiate whether an image is genu-
ine or fake. The training of the generator and discriminator iterates until the algorithm converges. Once con-
verged, it is expected that the generator is able to generate fake images that resemble the training images, 
such that the discriminator cannot differentiate whether the given image is genuine or fake
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Two loss functions govern the learning process, binary cross entropy to learn the realness 
of an image and categorical cross entropy to learn which class it belongs to. Both loss 
functions are tied to the discriminator model.

3.4 � Transfer learning and fine‑tuning

Transfer learning refers to the process of applying a previously-learned model to data from 
relevant domains. It is now popularly used in deep learning because it can leverage deep 
neural networks previously trained by others without retraining the models, which require a 
significant amount of training data and time [56].

Fig. 4   A Simple Auxiliary 
Classifier GAN (AC-GAN) 
architecture which takes into 
account the class label of the data 
into consideration to generate 
synthetic data
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In our proposed framework, as shown in Fig. 1, we combine synthetic samples gener-
ated from GAN or data augmentation with the majority of samples to form a relatively bal-
anced training set to fine-tune some classical deep learning models, including EfficientNet, 
ResNet, Vision transformers, and ConvNeXt. Our goal is valid whether synthetic samples, 
combined with transfer learning, can help boost dermoscopic image classification with 
imbalanced classification.

3.4.1 � EfficientNet

About a decade ago, the accuracy performance of deep learning models for image classifi-
cation improved alongside the complexity of the models for the ImageNet dataset, but these 
models were mostly inefficient in terms of computational load. The EfficientNet model was 
among the state-of-the-art CNN models because it achieved 84.4% accuracy with 66 M 
parameters in the ImageNet classification challenge. The EfficientNet group has eight mod-
els from B0 to B7, and while the number of estimated parameters does not rise dramati-
cally with model size increase, accuracy does. While most convolutional neural network 
(CNN) models rely on the Rectifier Linear Unit (ReLU) activation function, EfficientNet 
employs a novel activation function dubbed Swish [11].

Compared to other state-of-the-art models, EfficientNet produces more efficient results 
since it consistently scales down the model in depth, width, and resolution. When working 
with a limited set of resources, the initial phase of the compound scaling method is to look 
for a grid that will reveal the connection between the various scaling dimensions of the 
baseline network. Scaling factors for depth, width, and resolution can be found in the fol-
lowing manner. To uniformly scale depth (d), width (w), and resolution (r), the compound 
coefficient φ, which is a user defined is used. where d = αφ, w = βφ and r = γφ. α, β and γ are 
constants allocated by grid search [11].

Once these coefficients are determined, the starting network can be scaled to meet the 
desired specifications. Since the FLOPS (floating point operations per second) budget 
for EfficientNet is higher than some other models, for instance, MobileNetV2 [29], the 
inverted bottleneck MBConv is the network’s primary building piece. Direct connections 
are utilized between bottlenecks that connect much fewer channels than expansion layers 
because blocks in MBConv consist of a layer that first expands and then compresses the 
channels [11].

When compared to conventional layers, the calculations required by these in-depth sep-
arable convolutions are reduced by nearly a k2 factor. Here, k is the kernel size, denoting 
the width and height of the 2D convolution window [11]. In Fig. 5, we show a simplified 
version of the EfficientNet B0 model.

3.4.2 � ResNet50

In 2015, the ResNet50 architecture was proposed as a solution to the problems of several 
non-linear layers failing to learn identity mappings and deterioration. ResNet50 belongs to 
a family of ResNet, while the 50 identifies the number of layers in the network. ResNet50 
is a stack of many residual units, a network-innetwork design. The infrastructure of the net-
work is constructed of Residual units. Both convolutional and pooling layers make up these 
modules. This design employs the same VGG16-like 3-by-3 filtering architecture for input 
images of 224 by 224 pixels [12]. ResNet50 uses residual connections to learn residual 
functions that may be added to layer inputs to produce outputs. Instead of learning the full 
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function, the network can learn to make input adjustments as it passes through each layer. 
The residual connection improves the gradient, which helps with improving the perfor-
mance. ResNet achieved state-0f-the-art performance and is used in many fields [46–48]. 
In Fig. 6, an example of the ResNet50 model is illustrated.

3.4.3 � Vision transformers

Vision Transformers (ViTs) is a type of neural network architecture that has been devel-
oped specifically for image recognition tasks. They are inspired by the transformer archi-
tecture, which was originally developed for natural language processing (NLP) tasks such 
as machine translation and language modeling.

The transformer architecture is based on self-attention mechanisms, which allow the 
model to attend to different parts of the input and weigh their importance when making a 
prediction. This allows the model to process the input in a more flexible and efficient way 
than traditional convolutional neural networks, which rely on fixed-size filters to extract 
features from the input.

Vision Transformer works by dividing the input image into a grid of patches and treat-
ing each patch as a token in a sequence. The model then processes these patches in parallel, 

Fig. 5   Baseline EfficientNet showing different block that makes it up. It comprises of several Inverted 
Residual Block or MBConv, which takes in a narrowwide-narrow approach to image classification for effi-
ciency reasons. [11]

Fig. 6   ResNet50 model architecture showing different convolutions, batch normalization, and max pooling 
layers of the model [12]
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using self-attention to learn relationships between the different patches and make a predic-
tion based on this information.

One of the key features of ViTs is the self-attention mechanism, which allows the model 
to attend to different parts of the input and weigh their importance when making a predic-
tion. This allows the model to process the input in a more flexible and efficient way than 
traditional convolutional neural networks (CNNs), which rely on fixed-size filters to extract 
features from the input. One of the main advantages of ViTs is that they can process images 
of any size, as the self-attention mechanism allows the model to attend to any part of the 
input regardless of its position in the grid. This makes them well-suited for tasks such as 
object detection, where the size and position of objects in the image can vary significantly.

3.4.4 � ConvNeXt

ConvNeXt (Convolutional Neural Network with eXternal memory Translation) [8] is a 
type of neural network architecture that combines elements of CNNs and external memory 
networks. It was developed to improve the performance of CNNs on tasks such as image 
classification, object detection, and segmentation. ConvNeXt consists of two main com-
ponents: a convolutional neural network and an external memory module. The CNN is 
responsible for processing the input and extracting features, while the external memory 
module is responsible for storing and retrieving information from an external memory 
buffer. The external memory module in ConvNeXt consists of a series of memory cells, 
each of which is associated with a key and a value. The keys are used to look up infor-
mation in the memory, while the values are used to store the information. The external 
memory module can be updated by writing new values to the memory cells or by reading 
and modifying existing values.

One of the main advantages of ConvNeXt is that it allows the model to store and 
retrieve long-term dependencies in the external memory, which can be useful for tasks 
such as image recognition where the relationships between different parts of the input may 
be complex and varied. This can help the model to make more accurate predictions and 
improve its generalization ability. ConvNeXt [8] can outperform the Swin Transformer [9]. 
For example, it outperformed Swin Transformers on COCO detection [10] and ADE20K 
segmentation [25], achieving 87.8% top-1 accuracy on ImageNet.

4 � Experiments

In this section, we report experimental results using the baseline approach, the simple data 
augmentation approach, and the AC-GAN augmentation approach using four deep learn-
ing networks fined tuned using the transfer learning approach introduced in the previous 
section.

4.1 � Dataset

HAM10000 (Human Against Machine) [13] is a dataset of dermatoscopic images of skin 
lesions (Fig. 7), which can be used to train machine-learning models for skin cancer diag-
nosis. The dataset consists of over 10,000 skin lesions images, including benign and malig-
nant tumors. The images were collected from various sources, including dermatologists, 
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hospitals, and the internet, and are representative of a wide range of skin types and 
conditions.

The HAM10000 [13] dataset is extensively used in cancer research to evaluate the 
performance of various skin cancer diagnosis algorithms and methodologies. Multiple 
research has utilized it to compare CNNs, support vector machines, and decision tree 
classifiers. The unbalanced nature of the HAM10000 dataset presents one of the greatest 
obstacles for machine learning applications. Compared to benign tumors, the dataset has a 
relatively limited number of malignant tumors, making it challenging for machine learning 
algorithms to distinguish minority groups reliably.

As has been mentioned, the HAM1000 dataset has almost 67% of the images belonging 
to the NV class, which makes it a very imbalanced dataset. Figure 8 shows the class dis-
tribution of the original dataset. Training models on an imbalanced dataset make it biased 
towards the majority class. Imbalance data is a common phenomenon when it comes to 
medical images.

In this research, various skin pigmentation types have been divided into seven distinct 
classes for the purposes of multi-class categorization, and those classes are Actinic kerato-
sis (kiec), Basal cell carcinoma (bcc), Benign keratosislike lesions (bkl), Dermatofibroma 
(df), Melanoma (mel), Melanocytic nevi (nv) and Vascular lesions (vasc) with a number of 
samples for each as 327, 514, 1099, 115, 1113, 6705 and 142, respectively. All images in 
the dataset are 450 × 600.

4.2 � Baseline

As the original HAM1000 is imbalanced and most of the images belong to the NV class 
that’s why the models trained on that dataset classify most of the test data as the majority 
class (NV). Table 1 shows the model metrics and parameters used in the experiments con-
ducted. A general conclusion by taking a look at the accuracy of the model trained on the 
imbalanced dataset shows that EfficientNet performs better than other models with a test 
accuracy of 85.82. In Image classification, accuracy is not a good measure, and the reason 
can be seen by looking at the confusion matrix of the models, which shows that as the NV 
class has 67% of images so the number of classifications leads to high accuracy.

Figure 9 shows the confusion matrices of EfficientNet, ResNet50, ViT, and ConvNext. 
All four models have relatively high accuracies, but that is because most of those correctly 

Fig. 7   Sample Images show different types of dermoscopic images. The above images are arranged as 
(Left-Side)AKIEC, BKL, DF, VASC, NV, Classified as Non-Cancerous while (Right-Side) Last two MEL 
& BCC are Classified as Cancerous lesions



Multimedia Tools and Applications	

1 3

classified images belong to the majority class. The confusion matrix verifies this conclu-
sion that accuracy is not a good measure for image classification.

4.3 � A simple data augmentation procedure

As the majority class has 6,705 images from the original dataset, which makes 67% 
images. In order to balance the dataset, we computed a ratio between the majority class to 
every other class and generated a sufficient number of images to balance the dataset. The 
augmented images were generated with the TensorFlow ImageDataGenerator module with 
types shown in Table 2

Several experiments were done by utilizing different combinations of hyperparameters 
of the deep learning models to get the ones with the most accurate results. Table 3 shows 
the selected hyper-parameters and results of the respective models.

Table  3 shows hyperparameters and accuracies of the models when trained of a bal-
anced dataset through augmentation. Comparing this with the baseline metric, we can see 
a clear and significant increase in accuracies. Efficientnet has the highest accuracy among 
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Fig. 8   Class distributions of the benchmark dataset “HAM10000”. The dataset is highly imbalanced with 
Melanocytic nevi (nv) containing over 67% of samples (nv, commonly called birthmarks or moles, is a non-
cancerous disorder of pigment-producing skin cells)

Table 1   Baseline model 
parameter settings

Architecture Learning Rate Optimizer Accuracy

EfficientNet 0.001 Adamax 85.82
ResNet50 0.001 Adamax 84.72
ConvNext 0.001 Adamax 84.82
ViT 0.001 Adamax 76.04
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all, while ConvNeXt stands after. An interesting finding is that ViT outperforms ResNet50, 
which was not the case when models were trained on the imbalanced dataset.

Figure  10 shows the class distribution of both the original and augmented data. As 
you can see that the augmented data almost perfectly balances the overall data for model 

Fig. 9   Confusion matrix of all four deep learning models when fine-tuned using imbalanced HAM10000 
dataset

Table 2   Different types of 
augmentations

Type Value Description

Rotation Range 10 Degree of rotation between 0 and value
Width Shift 0.1 Shift the Image on X-Scale
Height Shift 0.1 Shift the Image on Y-Scale
Zoom Range 0.1 Scale upto which the image is zoomed
Horizontal Flip True Flipping the Image horizontally
Rescale 2 Rescale the Image on given value
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training. With the augmented dataset, all four models that were trained produced much bet-
ter results than using the original data. Figure 11 shows the confusion matrices of all the 
models that were trained of 10 epochs with fivefold cross-validation.

4.4 � Synthetic data using AC‑GAN

As has been mentioned, data plays a vital role in training a deep learning model. To 
balance the class distribution of the imbalance HAM10000 dataset, several studies 
have been done on skin lesion classification by utilizing GANs. Xiang et al. [16] used 
AC-GAN to generate images for three classes and then DenseNet [44] to classify the 
images. In this study, we use GAN to produce synthetic data based on the original data. 

Table 3   Models Metrics with 
Augmented Dataset

Architecture L.Rate Optimizer Accuracy

EfficientNet 0.001 Adamax 97.73
ResNet50 0.001 Adamax 83.03
ConvNext 0.001 Adamax 97.63
ViT 0.001 Adamax 90.86
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Fig. 10   Augmented data class distributions (The final number of samples of minor classes slightly vary. 
This is caused by a randomization augmentation process which applies the same number of augmentations 
to each input image)
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The dataset was balanced using AC-GAN as described in Sect. 3.3.1 and was used to 
train the model with a set of metrics shown in Table 4. Figure 12 shows the class distri-
bution of the data generated with GAN as compared to the original dataset. Similar to 
the augmented data, the synthetic data was generated with AC-GAN based on its ratio 
to the original class distribution of the HAM10000 dataset.

Fig. 11   Confusion matrices of fine-tuned deep learning models using data combining majority class sam-
ples and synthetic samples generated using simple augmentation procedure

Table 4   Models Metrics with 
Synthetic Dataset

Architecture L.Rate Optimizer Accuracy

EfficientNet 0.001 Adamax 96.79
ResNet50 0.001 Adamax 96.32
ConvNext 0.001 Adamax 94.05
ViT 0.001 Adamax 93.98
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Table 4 shows different hyperparameters and the accuracy of the models. Similar to the 
Imbalanced and Augmented, Efficientnet still performs better than all, while Resnet50 is 
second instead of ConvNeXt. Cross-analyzing The tables we can see that ViT has slightly 
higher accuracy on the synthetic data as compared to augmented data while all the other 
models perform much better on the augmented data.

In our experimental approach, we trained the model on synthetic minor- ity class data 
generated by an AC-GAN. This minority class data was then carefully combined with the 
majority class data from the HAM10K dataset to balance the class distribution. Our con-
fusion matrices for models trained with synthetic data are shown in Fig.  15. We found 
that models trained on this expanded dataset outperformed those trained on the original 
HAM10K dataset. This considerable improvement shows that adding minority class syn- 
thetic data to the majority-class data improved the machine learning models. This strategy 
reduced class imbalance and improved classification results.

Figure  13 shows the initial batch of the synthetic data generated by the ACGAN 
after the first epoch, and Fig. 14 shows synthetic images after training AC-GAN for 35 
epochs. Comparing Figs. 13 and 14, it is clear that, as the learning continues, AC-GAN 
indeed learns to improve the image quality, and the synthetic images are becoming more 
realistic. Another inherent advantage of AC-GAN is that the generated synthetic images 
are diversified in different forms, and some of them impose structures not exist in the 
original training samples. This suggests that GAN may generate “new” samples which 
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Fig. 12   Synthetic-generated class distributions (the number of samples of the majority class and minority 
classes are set to be equal to each other)
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provide additional information to boost learning, such approaches have indeed shown 
improved results in several existing studies [55, 57].

Nevertheless, when comparing the quality of images generated from ACGAN 
(Figs. 14 and 13) vs. simple data augmentation (Fig. 2), it is clear that the resolutions 
of the images from GAN are much lower than augmentation. This is because that data 
augmentation largely preserves the original image resolutions. This makes images gen-
erated from data augmentation keep sufficient details crucial for deep neural network 
learning. As we will report in the following subsections, the ability to preserve origi-
nal resolution often makes data augmentation bring better-trained models than the ones 

Fig. 13   Examples of images generated from AC-GAN after the first epoch

Fig. 14   Examples of synthetic images generated from AC-GAN after 35 epochs
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trained from GAN-generated synthetic images as can be evaluated from the confusion 
matrix in Fig. 15.

Table  5 shows metrics for all models fine-tuned using the original, augmented, and 
GAN-generated synthetic datasets. The results show that EfficientNet trained on the aug-
mented dataset has a relatively better performance compared to other models where Vision 
Transformers when trained on the GAN-generated data, perform much better than that on 
the augmented data (in our experiments, vision transformers were trained for 10 epochs) 
(Fig. 15).

4.5 � Comparative analysis

Table 6 reports some previously published results on the benchmark data (HAM10000), 
including the most recent findings regarding state of the art. It becomes abundantly clear, 
upon close inspection, that our research has generated the most astonishing results across 
a wide variety of assessment criteria, which brings this finding to light. In particular, our 
experimental analysis demonstrates that EfficientNet outperforms its counterparts more 
consistently than any other model evaluated on the changed dataset. This is the case when 
accuracy is taken into consideration. Notably, EfficientNet exhibits excellent performance 
even when contrasted with ResNet50, which achieves a similar.

degree of excellence on the enriched data. This is a significant achievement. A visual 
similarity in the results is produced due to the accuracy of the reported values, which have 
been rounded to a single decimal point.

While EfficientNet and ResNet50 demonstrate amazing performance on the augmented 
data, the Vision transformer demonstrates outstanding performance on the synthetic data. 
This is something that should be highlighted because it is so impressive. When presented 
with synthetic data, the Vision transformer demonstrates significant improvements beyond 
those it has already achieved with the enhanced data. This discovery highlights the adapt-
ability and versatility of the Vision transformer design, which makes it an appealing choice 
for managing a variety of data types and domains.

Table 5   Model performance metrics (ORG: results from the original dataset, AUG: results from using orig-
inal dataset and augmented samples, GAN: results from using original dataset and GAN generated synthetic 
data)

Model Data F1-Score Precision Recall AUC​ Average Accuracy

Efficient-Net-B0 ORG
AUG​

73.7728
97.7386

77.0909
97.8532

72.8951
97.7329

84.1627
98.6776

85.8212
97.7340

GAN 96.8652 96.8396 96.9202 98.1956 96.8245
ResNet50 ORG

AUG​
72.3775
97.5116

75.0827
97.5761

70.3324
97.5202

82.9656
98.5535

84.7229
97.5207

GAN 96.3910 96.3942 96.3956 97.8904 96.3219
ConvNext ORG

AUG​
71.1941
97.6205

75.3978
97.6897

69.0066
97.6260

82.4979
98.6153

84.8227
97.6276

GAN 94.1802 94.8059 93.9893 96.4949 94.0546
ViT ORG

AUG​
50.9759
89.9892

51.9709
90.2581

51.0734
90.1281

72.3858
94.2240

76.0359
89.9147

GAN 94.1068 94.2298 94.0456 96.5189 93.9790
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In summary, the findings of our research, presented in Table 6 and illustrating the supe-
riority of our suggested method across various evaluation measures, are presented here. 
On the synthetic data, EfficientNet and ResNet50 prove to be effective, while the Vision 
transformer emerges as a powerful competitor. All of these models perform relatively well 
on the enhanced data. These improved results highlight the significance of our research and 
its possible ramifications for the development of data analysis and machine learning fields.

5 � Conclusion

Data imbalance is a common challenge in machine learning where the imbalanced class 
distributions often make the learning emphasize majority class samples to ensure a 
high classification accuracy. In this paper, we studied class imbalanced dermoscopic 
image classification by using transfer learning and fine-tuning pre-trained deep neural 

Fig. 15   Confusion matrices of fine-tuned deep learning models using data combining majority class sam-
ples and synthetic samples generated using AC- GAN
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networks. Our experiments show that pre-trained models, such as EfficientNet, Resnet, 
ConvNeXt, and Vision transformers, are vulnerable and sensitive to class imbalance if 
data used for fine.

tuning are imbalanced. On the other hand, balance class distributions in the fine-
tuning dataset bring noticeable improvement to the model performance. When balanc-
ing the class distributions, synthetic data generated using GAN and generated using 
augmentation of original training images are both effective. Nevertheless, using data 
augmentation often results in better model performance across the four validated deep 
neural networks compared to GANgenerated samples. We believe that this is mainly 
attributed to the quality of the synthetic images, where GAN-generated images have 
relatively low resolutions and lack sufficient details compared to simple data augmenta-
tion, such as rotation, shifting, zooming, etc. Because most deep neural networks rely 
on convolutional filters to learn features from local regions, as the number of convo-
lutional filters is limited, the augmentation provides opportunities to create different 
local patches for filters to learn features unique to the minority classes. In summary, our 
research suggests that simple data augmentation is a low-hanging fruit approach to tack-
ling data imbalance in dermoscopic image classification.

Table 6    Comparative analysis with published results

Ref Models Augmentation Accuracy F1 Prec Recall

[16] DenseNet201 AC-GAN 81.56 N/A N/A N/A
DenseNet201 80.30
VGG16 68.38
SVM Ensemble 85.69

[17] ResNeXt101 Augmentation 93.2 N/A 88.0 88.0
InceptionV3 Augmentation 91.56 89.0 89.0
InceptionResenetV2 Augmentation 93.20 87.0 87.0

[18] GoogleNet 84.2 N/A N/A 59.2
AlexNet 84.8 51.8
ReNet 82.8 52.0

[19] VGG16 N/A 75.6 N/A
Resnet50 86.6
Dense121 89.2
InceptiomV3 74.3

[20] ResNet50 87.1 78.6 77.0
InceptionV3 89.7 84.9 80.0

[21] DenseNet121 Augmentation 89.63
ResNet 89.7 84.9 80.0

Ours EfficientNet-B0 Augmentation 97.7 97.7 97.7 97.7
EfficientNet-B0 AC-GAN 96.8 96.8 96.8 96.9
ResNet50 Augmentation 97.5 97.5 97.5 97.5
ResNet50 AC-GAN 96.3 96.3 96.3 96.3
ViT Augmentation 89.9 89.9 90.2 90.1
ViT AC-GAN 93.9 94.1 94.2 94.0
ConvNeXT Augmentation 97.6 97.6 97.6 97.6
ConvNeXT AC-GAN 94.0 94.1 94.8 93.9
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6 � Future direction

Our study shows that GAN is relatively less effective than data augmentation in tackling 
data imbalance. One hypothesis is that the quality/resolution of images generated from 
GAN is not at satisfactory levels. Future studies are needed to quantify and investigate 
image quality and other factors impact on algorithms using generative models to allevi-
ate the data imbalance. Meanwhile, our current study is primarily limited to images. 
Different types of datasets, including texts, time series data, and tabular data, can be 
used to cross-compare the results of GAN and augmented data with respect to different 
models, including generic machine learning classifiers.
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